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Abstract
In physics-based liquid simulation for graphics applications, pressure projection consumes a significant amount of computational
time and is frequently the bottleneck of the computational efficiency. How to rapidly apply the pressure projection and at the same
time how to accurately capture the liquid geometry are always among the most popular topics in the current research trend in
liquid simulations. In this paper, we incorporate an artificial neural network into the simulation pipeline for handling the tricky
projection step for liquid animation. Compared with the previous neural-network-based works for gas flows, this paper advocates
new advances in the composition of representative features as well as the loss functions in order to facilitate fluid simulation
with free-surface boundary. Specifically, we choose both the velocity and the level-set function as the additional representation
of the fluid states, which allows not only the motion but also the boundary position to be considered in the neural network
solver. Meanwhile, we use the divergence error in the loss function to further emulate the lifelike behaviours of liquid. With these
arrangements, our method could greatly accelerate the pressure projection step in liquid simulation, while maintaining fairly
convincing visual results. Additionally, our neutral network performs well when being applied to new scene synthesis even with
varied boundaries or scales.
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1. Introduction and Motivation

Fluid behaviours are widespread in nature and fluid simulation
has always been a research hotspot in the field of industrial
fluid modelling, computer graphics, film/game industry, etc. The
dynamic behaviour of fluid is governed by the Navier–Stokes
equations (N-S equations) which usually need iterative numerical
solvers that is time-consuming in computation. To improve the
efficiency of the simulators has always been a popular topic in
researches. For instance, some researchers proposed adaptive-scale
particles [APKG07, ZHQH], hybrid grids [MCPN08, CM11] and
dynamic particle partitioning [ZGL*18] to reduce the computa-
tional burden. Using the preconditioned conjugate gradient (PCG)
method [Bri15] instead of the general numerical iterative method,
such as Jacobi iteration or Gauss–Seidel iteration, could obtain

a significantly faster convergence rate. Although these methods
alleviate the problem to some extent, it is still impossible to
avoid the solving of the N-S equations, which is the bottleneck of
efficiency.

In recent years, apart from the traditional physics-based solvers,
data-driven approaches attract more and more attention of re-
searchers. To name a few, Treuille et al. [TLP06] proposed a
dimensionality reduction method that can conduct real-time simu-
lation of flows. Kim et al. [KD13] improved the subspace scheme
to support semi-Lagrangian advection. Zhai et al. [ZHQH17]
later combined the subspace technique with Empirical Mode
Decomposition (EMD) to control the style of flow anima-
tion. Jeong et al. [JSP*15] integrated random forests into the
smoothed-particle hydrodynamics (SPH) algorithm to achieve
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Figure 1: Generated results using our method with varying resolutions. Left (803): Two water balls fall free; Middle (1283): Water shuttles
among three boards; Right (2403): A breaking dam impacts a bunny and two cylinders. Our method speeds up about 10–100 times over PCG
when the resolution increases and generates realistic visual effects.
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Figure 2: A brief illustration of our work. We generate training data with PCG solver and train our networks with the special designed feature
vector for liquid. We integrate the trained network into the simulation framework for more efficiently solving pressure projection than PCG.
And our method can support three main applications involving reconstructing liquid simulations, generating new simulations and expanding
liquid scenes in a very fast way.

the end-to-end fluid reproduction. In recent years, with the rapid
development of deep learning, many researchers seeked to treat
physics-based simulation as learning applications. For example,
there was a latent-space physics [WBT18] that also adapted the
end-to-end idea. Yang et al. [YYX16] and Tompson et al. [TSSP17]
used a neural network (NN) as pressure solver for smoke mod-
elling instead of the conventional PCG solver. However, while
these methods have significantly improved efficiency, few of them
applied for liquids since there are significant differences between
liquid and smoke, such as surface, density, viscosity, etc.

To address the computational efficiency problem in liquid simula-
tion, this paper presents a data-driven approach to quickly solve the
pressures and to authentically reconstruct the motions. More specif-
ically, instead of solving the large sparse linear system, we establish
our fast liquid pressure inference based on the existing NN gas sim-
ulators [YYX16, TSSP17]. To accommodate liquid circumstance,
we take advantage of level set and velocity by putting them into
the input feature vector so that the network perceives the surround-
ings more accurately. Besides, a divergence term is included into

the loss function to predict more realistic results. We use the fluid-
implicit-particle (FLIP) model as the basic framework in this paper
for straightforward implementation, but our network solution can be
easily migrated to other models as well (refer to Figure 1). The train-
ing dataset is produced from a high-precision PCG solver, which
ensures the effective inference of pressures. The brief pipeline of
our work is shown in Figure 2.

Specifically, the salient contributions of this paper include:

• We present a data-driven method to solve pressure projection for
liquid simulation, which greatly improves the efficiency and our
method can be easily migrated to other liquid models.

• We propose a feature vector that includes representative charac-
teristics such as level set and velocity which can accurately de-
scribe the liquid state during simulation.

• We develop an FLIP pressure solver that uses only local informa-
tion for liquid generation, which is capable of handling varying
boundaries and spatial scales.
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2. Related Works

This work is closely related to the Lagrangian methods, the grid-
based fluid solvers and machine-learning-based fluid simulation.
We briefly review them in the following.

Lagrangian methods discretize fluid into particles to tackle the
implied dynamics. A typical representative is the smooth particle
hydrodynamics (SPH) method which was first introduced by Mon-
aghan et al. [Mon92] for fluid simulation. To improve the computa-
tional efficiency of SPH, Desbrun et al. [DC99] used a space–time
adaptive method with smaller time step and particle radius in key
areas, and reduced computing overhead by concentrating comput-
ing resources. Adams et al. [APKG07] proposed an approach us-
ing small radius particles in areas with complex boundaries and fast
flow rates. Ihmsen et al. [ICS*14] developed IISPH of a formula
for projection based on PCISPH [SP09] that allows for larger time
step and a faster convergence rate. Takahashi et al. [TDF*15] calcu-
lated viscosity implicitly to improve the stability and efficiency of
viscous integration.

Grid-based methods are also very popular apart from the La-
grangian methods. Since Foster et al. [FM96] applied Euler method
to the field of computer vision, it has attracted attentions of many
researchers [EMF02, SKK07]. The detail level of Euler solvers de-
pends on the resolution of grids so that it shall be at the expense of
computational efficiency to make finer grids with rich details. For
grid-based methods, the pressure projection needs to solve a large
linear equation system whose scale is related to the number of grids,
which takes upmost of the simulation time. Enright et al. [ENGF03]
proposed the ghost particle method to improve the accuracy and
efficiency of pressure projection on the surface of liquid. Foster
et al. [FF01] and Bridson et al. [Bri15] used the PCG method to
solve linear equations, achieving relatively high efficiency. Ando
et al. [ATW13] leveraged an alternative Eulerian tetrahedral mesh
discretization to significantly reduce the complexity of the pressure
solver while increasing the robustness. Molemaker et al. [MCPN08]
and Chentanez et al. [CM11] used multi-grid scheme to solve the
pressure projection to realistically represent the details of complex
areas, while ensuring stability under large time step settings. Among
the grid based solvers, FLIP is the most popular method which de-
scribes fluid with particles and solve equations in grids. It com-
bines the advantages of Lagrangian and Euler to effectively simulate
complex fluids. Gao et al. [GLQH17, GLQ*19] introduced unified
solvers for different materials to improve the efficiency and to solve
the interactions within FLIP model. Ferstl et al. [FAW*16] pro-
posed the narrow-band FLIP method, which sampled particles only
near the surface of the liquid. It ensures rich visual details while
reducing the computational overhead overall.

Machine learning has been applied into fluid simulation in re-
cent years. To avoid solving the time-consuming equations during
the simulation, Jeong et al. [JSP*15] proposed a random forests
method integrated with SPH. In the particle system, the current
particle states were encoded and transferred into a trained random
forest, and the particles states in the next frame were directly ob-
tained. Wiewel et al. [WBT18] trained a set of automatic encoder-
decoder, encoding data of each frame as the input, with a long-short-
term memory network as the predictor of the next frame and used
decoder after obtaining the predicted frame sequence. These end-

to-end approaches abandoned the traditional idea of solving N-S
equations. In addition to using machine learning directly for fluid
simulation, Zheng et al. [ZGL*18] proposed an unsupervised PP-
SPH method for high-speed fluids acceleration. They introduced a
k-means clustering method into the SPH to partition particles into
two disjoint groups, and used a two-scale time step scheme for
these two types of particles. Some researchers also used machine
learning to improve the visual effects of simulation results. Chu
et al. [CT17] and Xie et al. [XFCT18] used convolutional NN to
generate superresolution results from low-resolution simulation sce-
narios. Um et al. [UHT18] proposed a deep NN to add a large num-
ber of splashed droplet details to a low-resolution simulation scene.
Moreover, Yang et al. [YYX16] and Tompson et al. [TSSP17] ac-
celerated the solving of Poisson equation by training an NN as the
pressure solver. However, their works only reproduced the dynamics
of smoke but could not be directly used for liquid. There is always
a clear surface between liquid and air domains which has very dif-
ferent motions on its two sides. To deal with this partition of space
is the main challenge of our work.

3. FLIP Model and Data-Driven Method

3.1. Basic FLIP model

In this paper, we use FLIP, which expresses material movement by
particles and solves pressure projection with grids, as the basic sim-
ulating model. The training set is acquired with a high-precision
FLIP simulator as well.

Physics-based fluid simulation is governed by the N-S equations
and needs to solve the Poisson equation in the projection step to
ensure incompressibility. The calculation model for a non-viscous,
incompressible fluid can be seen in the following equations:

∂u
∂t

= −u · �u− �p/ρ + f , (1)

� · u = 0, (2)

where u is the velocity, p is the pressure, ρ is the density of liq-
uid and f is external force. Equation (1) is the momentum equation
which controls the evolution of the fluid in space and time. Equa-
tion (2) requires that the divergence of the velocity field be zero
everywhere and ensures that the fluid is not compressible. To solve
these equations, it is necessary to discretize them in space and solve
them by operator decomposition.

When performing pressure projection, we need to solve the Pois-
son equation:

� · u∗ = �t

ρ
�2p, (3)

where u∗ is the temporary velocity before projection and �t is time
step. After discretizing the equations on theMAC grid, a large linear
equations will be obtained by rearranging the resulting equations.
The traditional solution of linear equations through numerical iter-
ations, such as Gauss–Seidel iteration, PCG, etc., is often the most
computationally expensive process in each time step. The whole al-
gorithm framework is shown in Algorithm 1.
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Algorithm 1. Algorithm Framework

Input:
Velocity of nth frame un
External force f
Grid occupation On

Output:
Velocity of (n+1)th frame un+1

1: for each particle do
2: Advect particle with un
3: end for
4: Map particles to grid
5: Add external force f
6: Pressure projection:
7: Solve Poisson equation with PCG or

[NN]Solve Poisson equation with NN
8: Update grid velocity
9: Update particles velocity

10: return un+1

3.2. NN for smoke simulation

For smoke simulation, in order to solve Equation (3) faster, some
researchers have tried to train the NN as a pressure solver. Yang
et al. [YYX16] adopted the local solver, which determines the pres-
sure value based on velocity, pressure, etc., of a local region. They
designed the content of the feature vector β by taking into account
the discrete form of the Poisson equation with all the variables that
may affect result, including pressure, divergence and obstacle occu-
pation for the grid cell and its six adjacent grids:

β =
{
p0,

6⋃
i=1

{pi,� · ui,Oi}
}

, (4)

where pi (i = 0, . . . , 6) represents the pressure of the grid cell and
its adjacent six grids, respectively, and it is the same for ui (i =
0, . . . , 6) and Oi (i = 0, . . . , 6).

Instead of local solver, Tompson et al. [TSSP17] developed a
global solver, which uses information from the global region to
solve the pressure problem. They transformed the learning task into
unsupervised learning by setting the training objective to reduce the
global velocity divergence. Here is the loss function:

Ld = (
� · (u∗ − �p′))2, (5)

where p′ is the predicted pressure. These works provide us al-
gorithmic and theoretical basis for the data-driven applications of
fluid simulation.

4. Data-Driven Model for Liquid Simulation

Traditional fluid simulation methods typically use rigorous mathe-
matical methods to solve N-S equations, which can obtain accurate
results but are very time-consuming. Although some researchers use
NNs to speed up the solution in smoke simulation, our purpose is
to simulate liquid behaviours with effective NN. In this section, we
will introduce how to apply NN to liquid simulation.

Figure 3: The structure of the network.

4.1. Learning liquid dynamics

The main goal of this paper is to make use of the function fitting
ability of NN and regard it as a regression tool to solve the pressure
projection. We adapt the local solver so that we can handle vari-
ous boundaries flexibly. Also, it can be easily integrated into the
methods of spatially discretizing N-S equations over grids. Our NN
has a fully connected architecture with five layers. The number of
neurons in the input layer is equal to the dimension of the feature
vector which will be discussed later (Section 4.1.1). The number
of neurons in the hidden layer is twice that of the input layer. The
output layer has only one neuron, which represents the pressure. By
evaluating the linear activation functions andmultiple non-linear ac-
tivation functions, we adopts the ReLU function as our activation
function. Figure 3 illustrates the structure of the network. In this
section, we will detail the design process of our feature vector and
loss function.

4.1.1. Feature vector construction

Feature vector is used as the input of NN and represents all the infor-
mation that the regression network can obtain. To make the network
predict result as accurately as possible, the feature vector must be
designed reasonably. According to the discrete form of Poisson’s
equation, Yang et al. [YYX16] designed the eigenvector describing
the smoke state. This form may be feasible when describing smoke.
However, both physical properties and motion patterns of the liq-
uid are quite different from smoke, so we still need to find more
characteristics to describe liquid.

Buoyancy serving as the external force, smoke flows often drift
around and there is no obvious boundary between smoke and empty
grids. Unlike smoke, there is a clear interface between the liquid
and air, so for liquid, it is easy to track the interface via the level set
method which describes the minimum distance � from each grid
cell to the liquid surface. Moreover, the pressure inside the fluid is
also closely related to the distance from the surface, especially in
the vicinity of the liquid surface. So, the characteristic of level set
should be considered as one of the liquid features.

In addition to level set, we also refer to the definition of fluid pres-
sure in computational fluid dynamics to accurately extract the char-
acteristics that may influence fluid pressure.We consider velocity as
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one of the characteristics, and for non-viscous incompressible ideal
fluid, the Bernoulli equation gives a close relationship between ve-
locity and pressure. It should be pointed out that we are looking for
an empirical approach to improving the accuracy of our method. Al-
though Bernoulli’s equation describes an irrotational and static flow,
we do not need to pursue rigorous formula derivation. Bernoulli’s
equation indicates that the total pressure p at a point is divided into
dynamic pressure pd and static pressure ps:

p = pd + ps = 1

2
ρ|u|2 + ps, (6)

where static pressure is only affected by depth in static fluid, while
the density ρ is a constant. The dynamic pressure represents the ki-
netic energy possessed by a unit volume of liquid and measures the
amount of pressure energy that converts to kinetic energy after sta-
tionary liquid is disturbed. Inspired by this formula, we hypothesize
that velocity still affects pressure in turbulence to certain extent.

Through the above analysis, we have extracted characteristics
such as level set and velocity to describe the characteristics of liq-
uid. In order to better verify the effects of these characteristics on
pressure prediction, we make many experiments about the effects
of adding them to β. These specific forms will be discussed in Sec-
tion 5.2.

4.1.2. Loss function design

The feature vector is used to describe the surroundings in which the
grid unit is located. It determines the information that the NN can
perceive. The loss function determines convergence direction of the
network. In the regression problem, the most simple and common
loss function is the L-2 norm, which indicates the difference be-
tween the predicted value and the ground truth. In this paper, we
use Lp to represent the distance:

Lp = (
p− p′)2, (7)

where p′ is the predicted pressure and p is the ground truth. Lp
is a very strong convergence requirement, which requires the pre-
diction results to completely converge to the true value. Yang
et al. [YYX16] said that there was a stable relationship between
input and output of the pressure projection. However, the perfor-
mance of the flow field depends not only on the accuracy of the
local pressure, but more importantly on the global results. Although
we are studying a local solution, we still want to add reasonable
global pressure feedback to the network. Therefore, just loss func-
tion Lp that applied to smoke simulation does not satisfy our require-
ment. We need to continue exploring other forms that can introduce
global feedback.

The purpose of the pressure projection is to smooth out the di-
vergence generated in the flow field after advection and the external
force computation, ensuring the passivity of the flow field. There-
fore, in the pressure prediction NN, enabling the prediction results
to minimize the divergence of the flow field could also become our
target. According to this idea, Tompson et al. [TSSP17] organized
the loss function of the pressure prediction network into an unsu-

pervised form. After the Laplacian is expanded on the MAC grid,
Equation (5) becomes:

Ld =
(
� · u∗ −

(
6∑
i=1

p′
i − 6 · p′

0

))2

, (8)

where we use the predicted results of other grids when doing back-
propagation based on the prediction of one grid. Under this mutual
influence, if we only use Ld as the loss function, the loss will oscil-
late and not converge with a high probability. Therefore, we com-
bine Ld with Lp, expecting Ld to correct the convergence direction
of the Lp. At the same time, we hope that Lp can point out a direc-
tion for Ld so that it will move in a converging direction. Note that
in order to make every backpropagation advance in the direction
that the flow divergence decreases, we construct each batch using
a full frame of data. Thus, our network can accept more accurate
feedback. Now we get the final form of the loss function floss:

floss =
∑

(Lp + w · Ld ). (9)

Here, floss needs to be summed over all the grids to get the complete
information for a frame. Among them, w is a weight used to ad-
just different units of loss terms. In our experiments, we have tried
different values of w such as 0.1, 1, 10, etc., and we have realized
that w = 1 is a good and simple choice. We will demonstrate the
effectiveness of our changes through experiments later.

4.2. Integration of data-driven solver

Our data-driven simulation framework can be easily realized by re-
placing the numerical iteration solution with our trained NN for
solving Poisson equation. After adding the external forces to grid
velocity, we calculate the divergence of u∗

n and build the input vec-
tor of NN with the information of current frame. Then we run a
forward propagation to get the predicted pressure. To initialize the
pressure field for NN, the first few frames are computed with the
PCG pressure solver to get the initial pressure values. In our exper-
iments, we calculate eight frames. The choice of this number is not
so strict, we find that in the range of 5–10, the experimental results
do not change significantly.

Algorithm 2 shows the procedure for solving the Poisson equation
using our NN. To achieve the goal of quickly solving pressures, we
use Algorithm 2 to replace the step in line 7 of Algorithm 1.

5. Experiments

In this section, we will detail the process of obtaining training
data and in addition, we will determine the best form of the fea-
ture vector and loss function discussed in the previous section
through a series of experiments and quantitative analysis. We use
manta f low [TP18] as our offline simulator.

5.1. Data acquisition

We use FLIP model to generate data for training. Our training data
mainly include two types of scenarios. The first is the free fall move-
ments of liquid, and the second type is breaking dams impact obsta-
cles. To make the distribution of training data more extensive, the
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Algorithm 2. Solve Poisson Equation with NN

Input:
Velocity of nth frame un
Temporary velocity of nth frame u∗

n

Levelset of nth frame �n

Pressure of nth frame pn
Grid occupation On

Output:
Pressure of (n+ 1)th frame pn+1

1: for each grid do
2: Calculate divergence
3: Build input vector
4: Neural network forward propagation
5: Update grid pressure
6: end for
7: return pn+1

Figure 4: Scenes in training data: TOP: Free fall droplet; Bottom:
Breaking dam impacts different obstacles. We randomly select the
size and locations to make our training data as rich as possible. All
training data are generated by scenes with resolution of 803.

geometric parameters of liquids and obstacles in each scene are dif-
ferent to cover the conditions encountered in conventional liquid
simulations as much as possible. For example, for the first type of
scenarios, we vary the position and radius of the water balls, as well
as the height of the liquid surface. For the second type, we change
the position and height of the dam, as well as the shape and posi-
tion of the obstacles. Figure 4 shows part of the simulation scenes
to collect the training set.

In our experiments, we run seven simulations for each type of
scenarios with five simulations as the training set and the rest as
the test set. Each simulation has an operation of 900 frames, and
we group data of one frame every eight frames to make one batch
according to the analysis in Section 4.1.2. All the simulation we
generated (which will serve as training data) were performed at a
grid resolution of 803, this low-resolution simulation allowed us to
get data quickly. From the simulation scenarios, we have obtained
about 50 million training samples.

Initial frame

β1
*+ floss

β1
*+ Lp

PCG

β2
*+ Lp

β2
*+ floss

Figure 5: Awater ball hits the surface (803). We tried different com-
binations of feature vector and loss function. Visually, the neural
network trained only by Lp as the loss function produces obvious
artefacts. After adding Ld to the loss function, the results become
better.

5.2. Training neural network

We implement our NN using the PyTorch framework and the Adam
optimizer. In previous section, we have discussed the possible com-
ponents of the feature vector and loss function that have influences
to the training model. To find the best design, we have trained our
network with different combinations. In the following, we will illus-
trate and discuss the simulation results generated by different com-
binations.

We have discussed the difference in physical form between smoke
and liquid in the previous section, so we add a level set to the feature
vector to describe the surface of the liquid. Inspired by the Bernoulli
equation, we find that velocity also has a large effect on the pressure
of the fluid; therefore, we also consider the effect of velocity. How-
ever, we cannot obtain the exact form of velocity difference before
pressure solving, so we test two feature vectors β∗

1 and β∗
2 , as shown

in Equation (10),

β∗
1 =

{
β,� · u0,

⋃6
i=0 {�i}, u0

}
,

β∗
2 =

{
β,� · u0,

⋃6
i=0 {�i}, �|u0|2

}
. (10)

Among them, u0 represents the intermediate velocity of the grid,
and �|u0|2 represents the difference between the square of the in-
termediate velocity and the initial velocity of the grid. To prove the
effectiveness of adding a divergence item to the loss function, we
train our NN with Lp and floss, respectively. Figure 5 compares the
results of our network trained with different loss functions. The re-
sults generated by network with Lp show significant visual artefacts.
However, after we add Ld into it, the fluid surface becomes more sta-
ble and smooth. It proves that the divergence term can effectively
improve the simulation results. Therefore, in the following experi-
ments, all the loss function is with the addition of Ld .

After determining the loss function, we will discuss the effect
of the two feature vectors on the result. We use two NNs trained
with β∗

1 and β∗
2 , respectively, and compare their results with the PCG

solution in the same initialization case. Figure 6 shows the results
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Figure 6: The results (803) produced from different neural networks trained with β∗
1 and β∗

2 compared with PCG. As can be seen from the
quantitative statistics of divergence, the network trained with β∗

2 is better than that with β∗
1 . Although the divergence is large at the beginning,

it is acceptable compared to PCG.

Figure 7: The volume curves obtained by β∗
1 and β∗

2 compared with
PCG. As can be seen from the figure, the trend of volume change is
similar to that of divergence change. In the stage of severe impact,
all three methods have the problem of volume loss. But after the
motion slows down, the volume changes very gently. β∗

2 , by contrast,
performed better than β∗

1 .

produced by the three different pressure solvers at frame 450. To
quantify the influences, we calculate the changes in average abso-
lute divergence over time, as shown in Figure 6 (far right). It can be
seen from the statistics that whether it is an NN or PCG solver, the
divergence is relatively large at the beginning since liquid is under-
going a vigorous impact movement, our experiment results are ac-
ceptable when compared with the PCG solution. After 300 frames,
the result of β∗

2 is obviously better than that of β∗
1 , and it is close

to PCG. In addition, we also calculated the volumetric change dia-
grams of the three results, as shown in Figure 7. It can be seen that
all three results have the problem of volume loss. In comparison,
β∗
2 is better than β∗

1 . So, we would like to choose β∗
2 as the input

vector of our network. That means that the input layer of our NN is
a 28-dimensional vector, and the number of neurons in the hidden
layer is 56. Moreover, the number of all trainable parameters of the
network is about 11 000.

In addition, after determining the feature vector and loss function,
we design and train a linear NN to prove the non-linearity of the

Figure 8: Comparison between PCG and our network. Top: Simu-
lation based on PCG solver; Bottom: Simulation based on our neu-
ral network. For scenes that appear in the training set, our approach
produces subtle differences, but the overall results are similar. And
our method only take one-seventh of the time. These two scenes have
same resolution of 803.

task. The structure of a linear NN is similar to the network struc-
ture described above, except for the activation function. Here, we
use a linear activation function a(x) = x. The figure below shows
the simulation results using a non-linear activation function. Signif-
icant artefacts appear in the simulation results. This can explain the
rationality of treating pressure solving tasks as non-linear tasks.

5.3. Applications

Our data-driven simulation method with integrated NN pressure
predictor can achieve different applications. The experimental re-
sults show that our NN pressure solver can reasonably predict the
pressure under various conditions.

5.3.1. Reconstruction

Figure 8 shows a simulation comparison of two scenarios solved
using PCG andNNs, respectively. In general, ourmethod can restore
the scenes in the training set under the same parameters and achieve
similar results. Note that our purpose is not to completely reproduce
the original scenes, since we have included the divergence term in
the loss function.
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Figure 9: New simulations with our methods: TOP (803): Two wa-
ter balls hit the surface; Bottom (1603): A breaking dam impacts
two animals. Our methods can generate realistic effect in different
scenes with different resolutions.

5.3.2. Scale expansion

Our training data were collected from simulations with a static res-
olution of 803. As shown in Figure 10, to simulate more sufficient
details andmore realistic behaviours, we apply the trainedmodels to
scenarios of various grid scales by a quite simple but useful manner
that stitches the scenes of 803 resolution proportionally to expand
the size of the simulation scenes. It should be pointed out that al-
though the expanded scale in the figure is a multiple of the original
scale, theoretically, our method can be applied to grids of any size.

Our training data are sampled from simulations with a constant
space size �h of 1/80 and the NN has only learned the mapping of
data collected from �h. Directly expanding multi-scale scenes will
lead to serious compression problems because of the mismatched
space steps between training set and generating scenes. However,
we fix the spatial step size as �h and consider changing the spatial
scale to R/80, where R is the target grid scale. It is not a compli-
cated procedure but greatly improves liquid incompressibility and
achieves good results. Figure 11 shows the simulation results of our
method at different spatial scales, which illustrates that our method
has good scalability and displays more realistic details than low-
resolution dose. This variable grid scales method provides a sim-
ple and efficient way, which achieves as good performance as high-
resolution simulations.

5.3.3. New scenes synthesis

The NN we propose mainly focuses on the local solution of pres-
sure, which is not affected by the global composition. Therefore,
for scenes that do not appear in the training set, as long as the
pressure values involved in database, our method can generate
liquid simulation with realistic visual effects. Since we have almost
50 million training samples, it could cover the vast majority of
pressure changes. With our trained network, once new boundaries
and liquid initial conditions are provided, we can generate new
liquid animations in a very short time. Figure 9 shows the results of
our approach to simulate new scenarios. Both these two scenarios
have not appeared in our training set, we can still simulate the re-
alistic behaviours of liquid animation and liquid–solid interactions.

Resolution: 80

Scale expansion

Resolution: 160

Resolution: 80

Resolution: 160

(a)

(b)

Figure 10: (a) Illustration of expanding large-scale scenes. Take
expansion of 803 resolution to 1603 as example, the original scene
involves twowater balls falling free.We stitch three same scale areas
to generate a new scene with two times grid scale. (b) Comparison
between different grid scales. To get a clear contrast, we expand
a scene of resolution 803–1603 and double the obstacle size at the
same time. It can be seen that the simulation with larger scale can
display more sufficient details.

Figure 11: Generated scenes of different resolutions. Our methods
can handle varying spatial scale, the resolutions are 1283, 1603 and
2403 from top to bottom.
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Figure 12: Top (803): A water block pouring to two steps; Middle (3503): Flood hits city models in a wide open boundary scenario. Bottom
(3703): Flood hits the mountain model. These scenes are quite different from the training data.

In order to showcase the generalizability of our approach, we
have also conducted an experiment which is significantly different
from the training data, as shown in Figure 12 (top). It shows the
water block pouring to two steps. Besides, we also do another two
experiments of flood hitting city (Figure 12 middle). As shown
in Figure 12 bottom, flood hits the mountain (Figure 12 bottom)
in wide open boundaries. In this scene, both the resolution and
phenomenon are too different to the training data, it is difficult
for the NN to reasonably learn the pressure of this high-resolution
scene, which causes obvious volume compression.

5.4. Analysis and discussion

5.4.1. Time efficiency

The key innovation in this paper is improving the efficiency of liq-
uid simulation while ensuring visual effects. In PCG solution, the
factors affect the computation time to include the complexity of the
linear system and the number of iterations. Actually, when generat-
ing training set, the linear system calculation time mainly depends
on the number of grid cells that need to be solved for pressure. In
practice, the number of liquid grid cells in a simulated scene is gen-
erally much smaller than the total number of grids divided from the
entire space, so we can save a lot of storage consumption. At the
same time, both our training model and generated model are im-
plemented on GPU algorithm to further improve efficiency. Table 1
shows the average calculation time per frame for several scenes with
different resolutions. It can be seen that our method is much more
efficient than traditional solvers, and as the resolutions increase, the
advantages of our approach are becoming more obvious.

Table 1: Comparison of average calculation time in different scenes and
resolutions (average time per frame). Time is measured in milliseconds. The
accuracy of PCG solution is 10−5, and the accuracy of Gauss–Seidel it-
eration and Jacobi iteration is 10−4. All of these iterations use CUDA for
parallel computing acceleration with an RXT-2080 GPU.

Scenes Res PCG Jacobi Gauss–Seidel NN

Figure 8 (Bottom) 803 51 34 43 7
Figure 9 (Top) 803 71 41 47 7
Figure 9 (Bottom) 1603 123 101 111 23
Figure 11 (Top) 1283 80 69 77 11
Figure 11 (Middle) 1603 149 110 119 23
Figure 11 (Bottom) 2403 622 579 522 43
Figure 12 (Top) 803 73 46 59 10
Figure 12 (Middle) 3503 – – – 84
Figure 12 (Bottom) 3703 – – – 112

In the case of low-accuracy requirements, our method has ex-
tremely fast calculation speed with acceptable visual performance.
However, for other applications like accurate incompressible fluid
simulations, our method cannot control the accuracy of the pressure
calculation. So, we cannot conclude from this table that our method
is superior to other numerical methods.

5.5. Long-term stability

To demonstrate the long-term stability of our method, we perform
an experiment in which a liquid tank makes a sinusoidal, nonstop
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Figure 13: Reciprocating tank. The top three pictures are render-
ings of the tank experiment at different times. The two graphs below
are the divergence and volume curves.

Figure 14: Kinetic energy of different scenes. We calculate the
trend of kinetic energy over time for different scenes, and the ex-
periments have good stability and convergence.

left and right reciprocating motion, as shown in Figure 13. As seen
from the figure, the liquid can still maintain the correct physics dur-
ing the reciprocatingmotion, divergence varies periodically with the
frequency of motion. In addition, we also plot the volume change
curve, and find that the volume is also changing periodically but
approximately within a stable range.

5.5.1. Convergence

To test the convergence of our method, we calculate the kinetic
energy of three representative scenarios. As shown in Figure 14,
the kinetic energy changes as liquid collides with boundaries or
streams as time goes by, and finally decays and converges to zero.

We could conclude that our proposed method has good stability
and convergence.

5.5.2. Limitations

Anon-negligible problem of ourmethod is the volume compression.
Since it is a local solution method, it may lead to the phenomenon
of ‘unresponsiveness’ of the liquid. For example, when the fluid hits
an obstacle, the fluid in the front part has already touched the obsta-
cle and starts to decelerate, but the latter part fluid cannot sense the
information of the collision in time, and continues to move at the
current speed, which may lead to a high probability of generating
volume compression. More severe the liquid impact motion is, the
compression problems may become more obvious.

Our method also encounter similar problems as other deep learn-
ing methods. Because the training data cannot cover all cases, the
pressure solvers may not reasonably predict situations that are too
far away from the training data, which limits the range of resolution
that the NN can expand to. All our training data are collected from
simulation scenarios with a resolution of 803. The data distribution
that can be collected from these scenarios is sufficient. However,
when the resolution of the scene is increased to 2403 or higher, it
is difficult for the NN to learn from the low-resolution training data
to reasonably extrapolate the pressure of the high-resolution scene,
which will also cause volume compression (Figure 12 (bottom)).

6. Conclusion

In this paper, we proposed a new approach of solving liquid simula-
tion using an improved data-driven method. We have analysed and
discussed the differences between liquids and smokes during simu-
lation, and tried different combinations between feature vectors and
loss functions of the NN. By adding information such as the level set
and velocity of the liquid to the input, the NN could more accurately
sense the state of liquid grids. To accurately predict the pressure and
minimize the global divergence, we designed loss functions based
on pressure and divergence, which could give our network more ac-
curate pressure feedback. Benefiting from the characteristic of lo-
cal solution, our pressure prediction network could easily expand to
various simulation scales through a simple improvement of spatial
step size.

Compared with the traditional method, our method greatly im-
proves the solution efficiency of Poisson equation while using pres-
sures of only few frames from numerical solver. What is more,
with our trained NN, we could generate multifarious new simula-
tions of various boundary conditions and expand to generate differ-
ent scenes with varying scales very fast. Our future works include
the high-resolution simulations through subdividing grids in special
size to achievemulti-resolution simulations. In addition, ourmethod
uses dimensional input and output. The trained network model only
learns the data mapping relationship under a certain time, space step
and density. If one of these variables is changed, the model cannot
reasonably calculate the pressure. Considering the dimensionless in-
put and output of the model to achieve variable space step size and
density simulation is also a direction worth of further studies.
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